On spatial and material settings of thermo- hyperelastodynamics for open systems
نویسنده
چکیده
The present treatise aims at deriving a general framework for the thermodynamics of open systems typically encountered in chemoor biomechanical applications. Due to the fact that an open system is allowed to constantly gain or lose mass, the classical conservation law of mass has to be recast into a balance equation balancing the rate of change of the current mass with a possible inor outflux of matter and an additional volume source term. The influence of the generalized mass balance on the balance of momentum, kinetic energy, total energy and entropy is highlighted. Thereby, special focus is dedicated to the strict distinction between a volume specific and a mass specific format of the balance equations which is of no particular relevance in classical thermodynamics of closed systems. The change in density furnishes a typical example of a local rearrangement of material inhomogeneities which can be characterized most elegantly in the material setting. The set of balance equations for open systems will thus be derived for both, the spatial and the material motion problem. Thereby, we focus on the one hand on highlighting the remarkable duality between both approaches. On the other hand, special emphasis is placed on deriving appropriate relations between the spatial and the material motion quantities.
منابع مشابه
Thermo-elastic Damping in a Capacitive Micro-beam Resonator Considering Hyperbolic Heat Conduction Model and Modified Couple Stress Theory
In this paper, the quality factor of thermo-elastic damping in an electro-statically deflected micro-beam resonator has been investigated. The thermo-elastic coupled equations for the deflected micro-beam have been derived using variational and Hamilton principles based on modified couple stress theory and hyperbolic heat conduction model. The thermo-elastic damping has been obtained discretizi...
متن کاملThree-dimensional Magneto-thermo-elastic Analysis of Functionally Graded Truncated Conical Shells
This work deals with the three-dimensional magneto-thermo-elastic problem of a functionally graded truncated conical shell under non-uniform internal pressure and subjected to magnetic and thermal fields. The material properties are assumed to obey the power law form that depends on the thickness coordinate of the shell. The formulation of the problem begins with the derivation of fundamental r...
متن کاملDeveloping a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کاملClosed Form Solution for Electro-Magneto-Thermo-Elastic Behaviour of Double-Layered Composite Cylinder
Electro-magneto-thermo-elastic response of a thick double-layered cylinder made from a homogeneous interlayer and a functionally graded piezoelectric material (FGPM) outer layer is investigated. Material properties of the FGPM layer vary along radius based on the power law distribution. The vessel is subjected to an internal pressure, an induced electric potential, a uniform magnetic field and ...
متن کاملThe Role of Hidden Curriculum on Educational Function of Students(A Case Study in Neyshabour High-school Students)
This study studies the role of hidden curriculum on educational function of students in 2011-2012. It also studies the hidden curriculum (social setting) on educational function among high- school students in Nayshabour. This research is descriptive and inferential. It also uses Halpean craft questionnaire and the validity shows 88%. 290 students were selected. Social settings of high schools i...
متن کامل